breadroll
breadroll 🥟 (with a small 'b') is an intuitive lightweight library for type-safe data processing, designed with type-safety, developer experience and reduced runtime errors in mind, it is written in TypeScript and optimized for Bun (opens in a new tab)'s runtime APIs.
- ⚡ Fast: breadroll is built on Bun, the all-in-one Javascript runtime built for speed
- 📁 File I/O: Support for various data sources - Local, HTTPS, & Supabase Storage
- 😊 Easy-to-use: Compose queries using filter keywords that are simple and are easy to comprehend
Installation
System Requirements:
- Bun (opens in a new tab) >= 1.0.22
- MacOS, Linux
- Typescript >= 5.1
Bun
Breadroll is built on and optimized for Bun.js. You can install Bun by running the following
Unix (Mac & Linux)
curl -fsSL https://bun.sh/install | bash
Windows
> powershell -c "irm bun.sh/install.ps1 | iex"
create a new Bun project by running
bun init
then you can now install breadroll using
bun add breadroll
Overview
Easy API
breadroll provides an easy to use API that gets you from zero to data processing in no time, with lazy loading of these delimited files via Bun's File I/O Bun.file()
, the file parsed based on the DataframeReadOptions
, and convert into a Dataframe
, and easily read out the content of the Dataframe using .value
.
import Breadroll, { Dataframe } from "breadroll";
const csv: Breadroll = new Breadroll({ header: true });
Example: From one instance example above, you can open multiple csv
files
const df: Dataframe<T> = await csv.open.local("./data/ds_salaries.csv", ",");
Remote Data Sources
breadroll makes it easy to work with remote data sources with current support for HTTPS and Supabase Storage. With other remote data sources on the roadmap.
const df: Dataframe<T> = await csv.open.https("https://.../.../filename.csv", ",");
const df: Dataframe<T> = await csv.open.supabaseStorage("bucketName", "filepath", ",");
Filtering
Peform complex filtering; with various filters including range filters like is between
that can be achieved using an optional function parameter limit
which is the upper limit. These range filter are only effective with numbers (integers, floating-point).
df.filter("age", "is between", 30, 40);
Perform even more complex filtering with multiple / chained filter, you can chain the filter ie. filtering the previously filtered Dataframe
, the chained filter can be as long as you need them to be.
df.filter("age", "is between", 30, 40).filter("salary", ">", 70000).filter("work_year", "==", 2020);
Data Transformation
Perform whatever transformation you'd like to perform on the value of a specified column, from simple transformation like value + 2
, to complex mathematical transformations that can be paired with the in-built numeric constant object
df.apply({ key: "salary", fn: (v) => v / (40 * 4), newkey: "per_hour" });
A Little Math
Get a single number that accurately represents the underlying data with the many provided aggregation functions, the likes of average (mean), max, min, sum, count, etc. with more in development
df.sum("capital_gain");
df.average("capital_gain");
df.count;